miércoles, 19 de junio de 2013










Al mirar a nuestro alrededor se observa que las plantas crecen, los animales se trasladan y que las máquinas y herramientas realizan las más variadas tareas. Todas estas actividades tienen en común que precisan del concurso de la energía.




La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza.


La energía se manifiesta en los cambios físicos, por ejemplo, al elevar un objeto, transportarlo, reformarlo o calentarlo.


La energía está presente también en los cambios químicos, como al quemar un trozo de madera o en la descomposición de agua mediante la corriente eléctrica.







La Energía puede manifestarse de diferentes maneras: en forma de movimiento (cinética), de posición (potencial), de calor, de electricidad, de radiaciones electromagnéticas, etc. Según sea el proceso, la energía se denomina:







Energía térmica
Energía eléctrica
Energía radiante
Energía química
Energía nuclear












  • La Energía se encuentra en constante transformación, pasando de unas formas a otras. La energía siempre pasa de formas más útiles a formas menos útiles. Por ejemplo, en un volcán la energía interna de las rocas fundidas puede transformarse en energía térmica produciendo gran cantidad de calor; las piedras lanzadas al aire y la lava en movimiento poseen energía mecánica; se produce la combustión de muchos materiales, liberando energía química; etc.








    El Principio de conservación de la energía indica que la energía no se crea ni se destruye; sólo se transforma de unas formas en otras. En estas transformaciones, la energía total permanece constante; es decir, la energía total es la misma antes y después de cada transformación.



    En el caso de la energía mecánica se puede concluir que, en ausencia de rozamientos y sin intervención de ningún trabajo externo, la suma de las energías cinética y potencial permanece constante. Este fenómeno se conoce con el nombre de Principio de conservación de la energía mecánica.






    FUENTES DE ENERGÍA RENOVABLES











    as Fuentes de energía renovables son aquellas que, tras ser utilizadas, se puedenregenerar de manera natural o artificial. Algunas de estas fuentes renovables están sometidas a ciclos que se mantienen de forma más o menos constante en la naturaleza.







    Existen varias fuentes de energía renovables, como son:
    Energía mareomotriz (mareas)
    Energía hidráulica (embalses)
    Energía eólica (viento)
    Energía solar (Sol)
    Energía de la biomasa (vegetación)






  • FUENTES DE ENERGÍA NO RENOVABLES











    Las Fuentes de energía no renovables son aquellas que se encuentran de forma limitada en el planeta y cuya velocidad de consumo es mayor que la de su regeneración.






    Existen varias fuentes de energía no renovables, como son:

    Los combustibles fósiles (carbón, petróleo y gas natural)
    La energía nuclear (fisión y fusión nuclear)



LA ENERGIA EOLICA








Energía eólica es la energía obtenida del viento, es decir, la energía cinética generada por efecto de las corrientes de aire, y que es transmutada en otras formas útiles para las actividades humanas.


En la actualidad, la energía eólica es utilizada principalmente para producir energía eléctrica mediante aereo generadores. A finales de 2011, la capacidad mundial de los generadores eólicos fue de 238 giga vatios.1 En 2011 la eólica generó alrededor del 3% del consumo de electricidad mundial.2 En España la energía eólica produjo un 16% del consumo eléctrico en 2011.3


La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar termoeléctricas a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. Su principal inconveniente es la intermitencia del viento.



LA ENERGIA NUCLEAR




a energía nuclear o energía atómica es la energía que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado, el aprovechamiento de dicha energía para otros fines, tales como la obtención de energía eléctrica, térmica y mecánica a partir de reacciones atómicas, y su aplicación, bien sea con fines pacíficos o bélicos.1 Así, es común referirse a la energía nuclear no solo como el resultado de una reacción sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano.









LA ENERGIA GEOTERMICA






La Energía geotérmica es aquella energía que puede obtenerse mediante el aprovechamiento del calor del interior de la Tierra. El término "geotérmico" viene del griego geo (Tierra), y thermos (calor); literalmente "calor de la Tierra". Este calor interno calienta hasta las capas de agua más profundas: al ascender, el agua caliente o el vapor producen manifestaciones, como los géiseres o las fuentes termales, utilizadas para calefacción desde la época de los romanos. Hoy en día, los progresos en los métodos de perforación y bombeo permiten explotar la energía geotérmica en numerosos lugares del mundo. La Tierra posee una importante actividad geológica. Esta es la responsable de la topografía actual de nuestro mundo, desde la configuración de tierras altas y bajas (continentes y lechos de océanos) hasta la formación de montañas. Las manifestaciones más instantáneas de esta actividad son el vulcanismo y los fenómenos sísmicos.



LA ENERGIA HIDRAULICA


Se denomina energía hidráulica, energía hídrica o hidroenergía, a aquella que se obtiene del aprovechamiento de las energías cinética y potencial de la corriente del agua, saltos de agua o mareas. Es un tipo de energía verde cuando su impacto ambiental es mínimo y usa la fuerza hídrica sin represarla, en caso contrario es considerada sólo una forma de energía renovable.


Se puede transformar a muy diferentes escalas, existen desde hace siglos pequeñas explotaciones en las que la corriente de un río mueve un rotor de palas y genera un movimiento aplicado, por ejemplo, en molinos rurales. Sin embargo, la utilización más significativa la constituyen las centrales hidroeléctricas de presas, aunque estas últimas no son consideradas formas de energía verde por el alto impacto ambiental que producen.


Cuando el Sol calienta la Tierra, además de generar corrientes de aire, hace que el agua del mar, principalmente, se evapore y ascienda por el aire y se mueva hacia las regiones montañosas, para luego caer en forma de lluvia. Esta agua se puede colectar y retener mediante presas. Parte del agua almacenada se deja salir para que se mueva los álabes de una turbina engranada con un generador de energía eléctrica.

miércoles, 5 de junio de 2013

La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos químicos, conforme a sus propiedades y características; su función principal es establecer un orden específico agrupando elementos.
Suele atribuirse la tabla ae Dmitri Mendv,eléy quien ordenó los elementos basándose en las propiedades químicas de los elementos,1si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.2La forma actual es una versión modificada de la de Mendeléyev; fue diseñada por Alfred Werner. En 1952, el científico costarricense Gil Chaverri (1921-2005) presentó una nueva versión basada en la estructura electrónica de los elementos, la cual permite colocar las series lantánidos y los actínidos en una secuencia lógica de acuerdo con su número atómico.3

miércoles, 15 de mayo de 2013








Se llaman isótopos cada una de las variedades de un átomo de cierto elemento químico, los cuales varían en el núcleo atómico. El núcleo presenta el mismo número atómico (Z), constituyendo por lo tanto el mismo elemento, pero presenta distinto número másico (A).

Los diferentes átomos de un mismo elemento, a pesar de tener el mismo número de protones y electrones (+ y -), pueden diferenciarse en el número de neutrones. Puesto que el número atómico es equivalente al número de protones en el núcleo, y el número másico es la suma total de protones y neutrones en el núcleo, los isótopos del mismo elemento sólo difieren entre ellos en el número de neutrones que contienen.


 Los elementos, tal como se encuentran en la naturaleza, son una mezcla de isótopos. La masa atómica que aparece en la tabla periódica es el promedio de todas las masas isotópicas naturales, de ahí que mayoritariamente no sean números enteros.



 Un átomo no puede tener cualquier cantidad de neutrones. Hay combinaciones "preferidas" de neutrones y protones, en las cuales las fuerzas que mantienen la cohesión del núcleo parecen balancearse mejor. Los elementos ligeros tienden a tener tantos neutrones como protones; los elementos pesados aparentemente necesitan más neutrones que protones para mantener la cohesión. Los átomos con algunos neutrones en exceso o no los suficientes, pueden existir durante algún tiempo, pero son inestables. Los átomos inestables son radioactivos: sus núcleos cambian o se desintegran emitiendo radiaciones.

miércoles, 8 de mayo de 2013

El Atomo.

El Átomo.


El átomo es la parte más pequeña en la que se puede obtener materia de forma estable, ya que las partículas subatómicas que lo componen no pueden existir aisladamente salvo en condiciones muy especiales. El átomo está formado por un núcleo, compuesto a su vez por protones y neutrones, y por una corteza que lo rodea en la cual se encuentran los electrones, en igual número que los protones.


atomo001


Protón, descubierto por Ernest Rutherford a principios del siglo XX, el protón es una partícula elemental que constituye parte del núcleo de cualquier átomo. El número de protones en el núcleo atómico, denominado número atómico, es el que determina las propiedades químicas del átomo en cuestión. Los protones poseen carga eléctrica positiva y una masa 1.836 veces mayor de la de los electrones.


Neutrón, partícula elemental que constituye parte del núcleo de los átomos. Fueron descubiertos en 1930 por dos físicos alemanes,Walter Bothe y Herbert Becker. La masa del neutrón es ligeramente superior a la del protón, pero el número de neutrones en el núcleo no determina las propiedades químicas del átomo, aunque sí su estabilidad frente a posibles procesos nucleares (fisión, fusión o emisión de radiactividad). Los neutrones carecen de carga eléctrica, y son inestables cuando se hallan fuera del núcleo, desintegrándose para dar un protón, un electrón y un antineutrino.


Algunos de tales modelos son los siguientes:
a) El Modelo de Thomson.
Thomson sugiere un modelo atómico que tomaba en cuenta la existencia del electrón, descubierto por él en 1897. Su modelo era estático, pues suponía que los electrones estaban en reposo dentro del átomo y que el conjunto era eléctricamente neutro. Con este modelo se podían explicar una gran cantidad de fenómenos atómicos conocidos hasta la fecha. Posteriormente, el descubrimiento de nuevas partículas y los experimentos llevado a cabo por Rutherford demostraron la inexactitud de tales ideas.
b) El Modelo de Rutherford.
Basado en los resultados de su trabajo que demostró la existencia del núcleo atómico, Rutherford sostiene que casi la totalidad de la masa del átomo se concentra en un núcleo central muy diminuto de carga eléctrica positiva. Los electrones giran alrededor del núcleo describiendo órbitas circulares. Estos poseen una masa muy ínfima y tienen carga eléctrica negativa. La carga eléctrica del núcleo y de los electrones se neutralizan entre sí, provocando que el átomo sea eléctricamente neutro.
El modelo de Rutherford tuvo que ser abandonado, pues el movimiento de los electrones suponía una pérdida continua de energía, por lo tanto, el electrón terminaría describiendo órbitas en espiral, precipitándose finalmente hacia el núcleo. Sin embargo, este modelo sirvió de base para el modelo propuesto por su discípulo Neils Bohr, marcando el inicio del estudio del núcleo atómico, por lo que a Rutherford se le conoce como el padre de la era nuclear.
c) El Modelo de Bohr.
El físico danés Niels Bohr ( Premio Nobel de Física 1922), postula que los electrones giran a grandes velocidades alrededor del núcleo atómico. Los electrones se disponen en diversas órbitas circulares, las cuales determinan diferentes niveles de energía. El electrón puede acceder a un nivel de energía superior, para lo cual necesita "absorber" energía. Para volver a su nivel de energía original es necesario que el electrón emita la energía absorbida (por ejemplo en forma de radiación). Este modelo, si bien se ha perfeccionado con el tiempo, ha servido de base a la moderna física nuclear.
d) Modelo Mecano - Cuántico.
Se inicia con los estudios del físico francés Luis De Broglie, quién recibió el Premio Nobel de Física en 1929. Según De Broglie, una partícula con cierta cantidad de movimiento se comporta como una onda. En tal sentido, el electrón tiene un comportamiento dual de onda y corpúsculo, pues tiene masa y se mueve a velocidades elevadas. Al comportarse el electrón como una onda, es difícil conocer en forma simultánea su posición exacta y su velocidad, por lo tanto, sólo existe la probabilidad de encontrar un electrón en cierto momento y en una región dada en el átomo, denominando a tales regiones como niveles de energía. La idea principal del postulado se conoce con el nombre de Principio de Incertidumbre de Heisenberg.